Detecting 3D location change in the presence of grouping cues

School of Psychology and Clinical Language Sciences **Contact:** E.L.Gootjes-Dreesbach@reading.ac.uk

Introduction

Task: Detect movement of one sphere (Fig. 3 & 4). Result: Remarkably poor performance [1], especially when task-irrelevant connecting lines (dipoles) change (Fig. 1).

Is this caused by

- image change?
- grouping change?

Power Analysis

How many participants are needed to detect an effect of a similar size?

Figure 2: Performance for localization in the previous experiment. Effect DFn DFd F $\Delta \eta^2$ p-value 24 38.20 .761 $< .001^{***}$ dipoles 2

Table 1: Group level effect of dipoles for 2 quads (8 spheres).

Recommended sample size to achieve 95% power is 3.

Test	Effect size (w)	df	sample size	α
χ^2	.3 (medium)	2	300	.0166(.05/3

Table 2: Power analysis for individual tests.

Luise Gootjes-Dreesbach, Peter Scarfe & Andrew Glennerster

Methods

Figure 3: Sphere distances from participant's starting location were 2.5-7.5m.

Results

Constant retinal size during target movement

Figure 4: On every trial, the target sphere moved 2m towards or away from the participant, maintaining retinal size.

significant across both sets of color conditions.

Effect	DFn	DFd	F	$\Delta \eta^2$	p-value
dipoles	2	4	8.18	.8	.039*
colour (2 groups)	2	4	0.35	.14	.725 (n.s.)
colour (paired spheres)	2	4	3.27	.62	.144 (n.s.)

 Table 3: Group level effects.

Conclusions

- ("switching dipoles").
- switching dipoles effect.
- The same is true for grouping change.
- 2D literature [2, 3].

References

- 16(12):285–285, 2016.
- Experimental Psychology: Learning, memory, and cognition, 26(3):683, 2000.
- [3] Yuhong Jiang, Marvin M Chun, and Ingrid R Olson. Perceptual grouping in change detection. Perception & *Psychophysics*, 66(3):446–453, 2004.

At the individual participant level, all Holm-Bonferroni corrected χ^2 tests (n=300) were significant for the dipole conditions and non-

• Replication of the original effect of lower performance on trials where connecting lines between objects switched position

• Image change alone does not cause disruption similar to the

• Findings for colour grouping in 3D scenes are compatible with the

[1] Peter Scarfe and Andrew Glennerster. Sensory cues used to determine 3d world stability. Journal of Vision,

[2] Yuhong Jiang, Ingrid R Olson, and Marvin M Chun. Organization of visual short-term memory. Journal of