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Experimental investigations of cue combination typically assume that individual cues provide noisy but unbiased sensory
information about world properties. However, in numerous instances, including real-world settings, observers systematically
misestimate properties of the world from sensory information. Two such instances are the estimation of shape from stereo
and motion cues. Bias in single-cue estimates, therefore poses a problem for cue combination if the visual system is to
maintain accuracy with respect to the world, particularly because knowledge about the magnitude of bias in individual cues
is typically unknown. Here, we show that observers fail to take account of the magnitude of bias in each cue during
combination and instead combine cues in proportion to their reliability so as to increase the precision of the combined-cue
estimate. This suggests that observers were unaware of the bias in their sensory estimates. Our analysis of cue
combination shows that there is a definable range of circumstances in which combining information from biased cues, rather
than vetoing one or other cue, can still be beneficial, by reducing error in the final estimate.
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Introduction

Combining sensory information

Humans have access to information from multiple
sensory modalities when making perceptual estimates
about properties of the world. Within a single sensory
modality, there are also multiple sources of information
that allow us to make perceptual estimates (Hershenson,
1999). The question then arises as to how this information
is integrated and combined. The visual system is not a
perfect measuring device so all cues are inherently
stochastic in nature. One way to combine noisy sensory
estimates is described by Bayes’ rule (Maloney, 2002;
Mamassian, Landy, & Maloney, 2002). This prescribes a
way in which the visual system can estimate the most
probable state of the world given current and past sensory
information (Knill & Richards, 1996; Mamassian et al.,
2002).
If we consider estimating the three-dimensional (3D)

shape of an object from stereo and motion cues, Bayes’
equation can be written as

pðŜkIS; IMÞò pðISkŜÞpðIMkŜÞpðŜÞ: ð1Þ

Here, the information provided by stereo and motion cues
is represented by IS and IM, where the likelihood functions

for stereo and motion, p(IS|Ŝ) and p(IM|Ŝ), represent the
generative transfer functions producing this image data.
The prior, p(Ŝ), describes the probability of encountering a
given shape in the world, independent of sensory data.
Given this information, the most likely shape in the world,
Ŝ, to have produced this sensory information is given by
the maximum of the posterior probability distribution,
p(Ŝ|IS, IM).
If the cues are conditionally independent and the prior is

uniform or has a much greater variance than the individual
cues, the combined-cue estimate of shape, ŜC, can be
represented by a simple weighted average of the estimates
provided by the individual cues ŜS and ŜM (Landy,
Maloney, Johnston, & Young, 1995; Oruc, Maloney, &
Landy, 2003):

ŜC ¼ wSŜS þ wMŜM: ð2Þ
The weights for stereo, wS, and motion, wM, are deter-
mined by the relative reliabilities of the two estimators
such that wS =

rS
rSþrM

and wM = rM
rSþrM

. The reliabilities of the

estimates provided by stereo, rS, and motion, rM, are given
by the reciprocal of their variances, rS = 1

vS
and rM = 1

vM
.

The variance of the combined-cue estimate, vC, is given
by

vC ¼ vSvM
vS þ vM

: ð3Þ
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This variance is the minimum possible for any linear
combination of cues and can also be written as the sum of
the reliabilities of the individual cues, rC = rM + rM. A
number of studies have shown that when combining
sensory information, Bayes’ rule, and more specifically a
weighted average, provides a good account of sensory
fusion both within and between modalities (Ernst &
Banks, 2002; Helbig & Ernst, 2007; Hillis, Ernst, Banks,
& Landy, 2002; Hillis, Watt, Landy, & Banks, 2004; Knill
& Saunders, 2003; MacNeilage, Banks, Berger, & Bulthoff,
2007).

Combining and calibrating biased sensory
estimators

The cue combination framework described suggests that
the optimization criterion adopted by the visual system is
one of reducing the variance of the combined-cue
estimate. This is a desirable outcome if the cues are well
calibrated and, therefore, unbiased, as the combined-cue
estimator will also be unbiased. However, this is not
necessarily the case if one or more of the cues are biased.
We describe “bias” here as the difference between an
observer’s estimates of a property of the world and its
actual physical value. Similarly, “accuracy” is defined as a
measure of this bias. Calibration to eliminate this type of
bias is what Burge, Girshick, and Banks (2010) have
described as maintaining “external accuracy.” They con-
trast this with calibration that maintains “internal consis-
tency.” This occurs when cues are calibrated such that
they provide the same sensory estimate of a world
property, but importantly, this estimate does not necessa-
rily agree with the true state of the world.
In the extreme, the two types of calibration described by

Burge et al. (2010) are in fact two sides of the same coin.
To maintain external accuracy, the brain needs informa-
tion about the physical state of the world, but the only
information it has about this physical state is that provided
by the senses. Because of this, there is no ground-truth
estimate by which to calibrate sensory estimates (Ernst &
Banks, 2002), so the visual system never has sufficient
information for calibration to obtain true external accu-
racy. Optimizing cue combination and calibration solely
in terms of variance (Burge et al., 2010; Hillis et al., 2004)
could, therefore, result in perceptual bias. The prevalence
of perceptual biases both with multiple-cue simulated
stimuli, and in judgements about real-world objects and
scenes, is indicative of the nature of this problem
(Bradshaw, Parton, & Glennerster, 2000; Todd & Norman,
2003; Wagner, 1985; Watt, Akeley, Ernst, & Banks,
2005).
When measurable conflicts are large, it has been

suggested that the visual system might behave in a robust
manner and veto biased cues (Landy et al., 1995). This
is a sensible strategy to adopt, as all cues are unlikely to

be equally biased. The problem then becomes identify-
ing which cues are biased and the relative magnitude of
this bias. The cue combination framework described is
unable to account for robust behavior because the visual
system is modeled as blind to the absolute error of its
perceptual estimates (Girshick & Banks, 2009). Despite
these problems, the visual system is clearly attuned to the
statistics of its environment and, under some circum-
stances, is seen to act to reduce the bias of its sensory
estimates (Adams, Banks, & van Ee, 2001; Burge et al.,
2010; Ernst, 2007).
Adams et al. (2001) demonstrated the adaptability of

such sensory mappings. Their observers wore a horizon-
tally magnifying prism in front of one eye continuously
for 6 days. This systematically changed the horizontal
disparity that the observers experienced during their
everyday behavior. Perceived slant was tested before,
during, and after imposition of the prism. Over the
duration that the prism was worn, observers were shown
to have remapped the relationship between retinal dis-
parity and perceived slant. Calibration to maintain
external accuracy is therefore, at least to some extent,
possible. So the important questions become understand-
ing the mechanisms the brain uses to achieve this and
what those instances when it clearly fails can tell us about
the process (Todd, Christensen, & Guckes, 2010).
Issues related to perceptual accuracy are clearly

important for models of motor control. In many instances,
it is assumed that accurate metric information is required
for successful movement (Milner & Goodale, 1995, 2006),
but rarely do such models consider how this information
might be acquired. One strategy that humans seem to have
adopted to control motor acts, such as prehension, is to
use relative information continuously over the course of
the movement (Saunders & Knill, 2003, 2004, 2005). This
strategy is interesting because it actively compensates for
those instances where external perceptual accuracy is not
possible (Brooks, 1991a, 1991b). It is, thus, not at all
obvious that veridical estimation of the metric shapes,
sizes, and locations of objects is required for adaptive
motor control (Brenner & Smeets, 2001; Smeets &
Brenner, 2008). Furthermore, once the action is com-
pleted, endpoint errors could also be used for sensory
calibration.

Variable and constant errors in cue
combination

The current study addresses the combination of stereo
and motion information for the estimation of 3D shape.
We consider the consequences for accuracy if the visual
system were to combine cues using the minimum variance
strategy, when in fact one or both of the cues were biased.
The first and most straightforward point to make is that,
even if cues are biased, combining them in proportion to
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their reliability will still result in the least variable
combined-cue estimate. However, we now need to
consider constant as well as variable error to assess the
usefulness of this combination procedure. For cases where
bias is present, a natural extension of the idea of
minimizing variance is the use of mean squared error
(MSE):

MSE ¼ E½ðSC j STÞ�2: ð4Þ

For our example, MSE is defined as the square of the
expected difference between the true value of shape in the
world, ST, and the estimated value, SC. While we do not
attach any special significance to the use of the MSE, we
have adopted it since it is a very widely used measure of
the error of an estimate (Brainard & Freeman, 1997;
DeGroot, 1986; Mamassian et al., 2002), closely related to
variance (DeGroot, 1986). Variance is typically adopted
in cue combination studies under the assumption that the
estimator is unbiased. Indeed, when the estimator is
unbiased, the MSE is equal to the variance, since the
average estimated shape is equal to the true world value.
In other words, combining unbiased cues to minimize
variance will also minimize MSE. When one of more
estimators is biased, this is no longer the case, and MSE
may be expressed as the sum of terms relating to the
variance and the bias of the combined-cue estimator
(Berger, 1985):

MSEC ¼ vC þ b2C: ð5Þ

Here, vC is the variance and bC is the bias of the
combined-cue estimate. In principle, it would be possible
to weight cues differently so as to minimize MSE.
However, this would require knowledge of both the
variance and the bias in the relevant cues. As we have
stated, we think that it is unlikely that the visual system
has access to a measure of bias in each cue; we thus
consider the situation in which only the variance of the
cues is known. Using MSE in this way is a useful way of
understanding the important relationship between variable
and constant errors in cue combination but not a likely
model of how the brain combines sensory information.
In the simplest case with our stereo and motion

example, one cue could be biased while the other is
unbiased. If the true value for shape in the world is given by
ST, and the stereo cue (SS) is unbiased with a variance of
vS, but the motion cue (SM) is biased by bM = (SM j ST)
and has a variance of vM, the bias of the combined-cue
estimator is given by

bC ¼ vSbM
vS þ vM

: ð6Þ

Substituting Equations 3 and 6 into Equation 5 and
simplifying gives us the MSE of the combined-cue
estimator:

MSEC ¼ vSvM
vS þ vM

þ vS
2bM

2

ðvS þ vMÞ2

¼ vS

ðvS þ vMÞ2
vSvM þ v2M þ vSb

2
M

� �
: ð7Þ

We can then determine those conditions when it would be
beneficial to combine cues, even though one is biased,
compared to vetoing the biased cue, even if the bias were
in fact known. This occurs if the mean squared error of the
combined-cue estimate is less than the mean squared error
of the stereo estimator alone, which is the case when

b2M G vS þ vM: ð8Þ
Figure 1a shows sample plots of the MSEC for a fixed
variance of 1 for the unbiased stereo cue but for varying
levels of bias and variance in the motion cue. As would be
expected, the lowest MSEC is found when the motion cue
is also unbiased. As the bias of the motion cue increases,
so too does the MSEC. However, this combined-cue error
is less than that of the stereo cue alone for the bias levels
satisfying Equation 8. These are shown by the portion of
the curves that lie below the horizontal line, which shows
the mean squared error of the stereo cue. This line
represents the point beyond which it would be beneficial
in terms of the expected error to combine cues, despite the
fact that one of them is biased (see also Burge et al., 2010).
The discussion so far has focused on the case of one

biased cue. We can also assess the error that will result if
both cues were biased, such that bM = (SM j ST) and bS =
(SS j ST). In this case, the bias in the combined-cue
estimator is given by

bC ¼ vSbM
vS þ vM

þ vMbS
vS þ vM

; ð9Þ

and the combined-cue mean squared error is given by

MSEC ¼ vSvM
vS þ vM

þ b2C: ð10Þ

Figures 1b–1d follow the same format as Figure 1a and
show the MSEC for the combined-cue estimator for a
range of variances and biases of the motion cue, with
separate graphs for different levels of bias in the stereo
cue. Here, the bias in the stereo cue is always positive, and
the variance of the stereo estimator is set to 1. It can be
seen that as the stereo cue becomes more biased, greater
levels of bias in the motion cue can be present before the
combined-cue MSE is greater than that of the stereo cue
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alone. This is especially true for negative biases in the
motion cue, which serve to counteract the stereo cue’s
positive bias. The interplay between the variances and biases
of the cues shows that there are circumstances when, even
though both cues are biased, it can still pay the observer to
combine cues rather than to veto one or the other.

Previous studies on stereo–motion
combination

A number of previous studies have investigated how
stereo and motion cues to shape might be combined. Early

work tended to focus on the fact that, because shape from
motion and shape from stereo scale differently with
distance, it is possible for the two sources of information
to conjointly specify the veridical shape of an object
(Richards, 1985). Overall, the results are generally in the
negative; shape is still misperceived when stereo and
motion cues are available (Tittle, Todd, Perotti, &
Norman, 1995; Todd, 1998; Todd, Chen, & Norman,
1998; Todd & Norman, 2003; Todd, Tittle, & Norman,
1995). One study that did find near veridical performance
with stereo and motion cues is that of Johnston, Cumming,
and Landy (1994). There are, however, a number of
complications in interpreting their data.

Figure 1. Plots of the mean squared error in the combined-cue estimator (ordinate) for varying levels of bias in the motion cue (abscissa).
The separate plots (a) through (d) are for different levels of bias in the stereo cue, as indicated on each plot. Within each plot, the black
horizontal line shows the mean squared error of the stereo estimator in isolation, and colored curves show the mean squared error of the
combined-cue estimator for various levels of variance in the motion estimator. For all plots, the variance in the stereo cue was set to 1.
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First, their stimuli also contained a relatively strong
texture cue, which was always consistent with the motion
cue. Second, focus cues were in conflict with the
geometric cues used to render the stimuli, as the screen
was positioned a fixed distance from the observer. This
makes interpretation of the results in terms of weighted
averaging of stereo and motion difficult. Finally, Todd and
Norman (2003) identified a heuristic strategy that observ-
ers could have used to estimate shape in this study without
the need to use a weighted averaging scheme. An overall
assessment of the literature, therefore, suggests that stereo
and motion cues are subject to systematic bias in most
circumstances. This bias has caused some investigators to
look beyond weighted averaging to model stereo–motion
combination (Domini, Caudek, & Tassinari, 2006).
The intrinsic constraint (IC) model (Tassinari &

Domini, 2008) proposes that stereo and motion informa-
tion are not processed in isolation as in weighted
averaging, but instead both cues are used to determine
shape up to an affine level, and then the most likely
Euclidean interpretation consistent with this affine struc-
ture is estimated. There is active debate as to whether the
IC model provides a good description of cue combination
(Domini & Caudek, 2009; MacKenzie, Murray, &
Wilcox, 2008), and there are a number of differences
between it and the Bayesian weighted averaging scheme
(Domini & Caudek, 2009). As will become clear, once it
is acknowledged that cues may provide biased sensory
estimates, the weighted averaging framework provides a
good account of stereo–motion cue combination. We
discuss the IC model further in the Discussion section.

Summary of the current study

We investigated the way in which human observers
combine information from motion and stereo for the
estimation of three-dimensional shape. Rather than intro-
duce small conflicts between the cues, while assuming
that each provides veridical information (e.g., Hillis et al.,
2004), we exploit the fact that observers show biases in
estimating shape frommotion and stereo, and that these biases
typically result in different estimates of the same three-
dimensional shape from each cue at a given viewing distance.
This provides an ideal way to see whether the visual system
combines discrepant sensory estimates in order to minimize
variance and to examine the consequences of these
discrepancies for the accuracy of perceived 3D shape.

Methods

Participants

Five observers took part in the experiment. These were
one of the authors (PS) and four people naive to the

purpose of the experiment. All had normal or corrected-
to-normal vision and good stereopsis.

Apparatus

The stimuli were viewed in a Wheatstone stereoscope,
such that the observer’s eyes viewed two identical
monitors through two front-surface mirrors orientated at
45 deg relative to a line of sight defined by zero vergence,
i.e., eyes looking at optical infinity. The center-to-center
distance of the mirrors was matched to the interocular
distance of the observer. Observers were positioned in
chin- and headrests to minimize head movement. Eye
height was adjusted to match that of the vertical center of
the monitor screens. The two monitors comprising the
stereoscope were spatially calibrated and gamma cor-
rected. The screen resolution of each monitor was 1152
by 864, running with a refresh rate of 85 Hz. Each moni-
tor was attached to a rail-mounted, custom-built, metal
enclosure. This allowed us to set the path length between
the eye and each monitor to match the vergence specified
distance of the rendered stimuli, while at the same time
maintaining highly accurate monitor orientation.

Stimuli

The stimuli were perspective projections of horizontally
orientated elliptical hemi-cylinders, 10 cm in length and
6 cm in height. The radius of a physically circular cylinder
would, therefore, be 3 cm, i.e., the cylinder’s nearest point
would appear 3 cm in front of the monitor’s surface. The
projection took account of each observer’s interocular
distance. The surface of each cylinder was defined by anti-
aliased red dots that were positioned with subpixel
accuracy. The diameter of the dots was 4 pixels
(approximately 1.3 mm). The dot density of the cylinder’s
surface was 6 dots/cm2, and cylinders were positioned
centrally on the screen. Figure 2 shows a diagrammatic
side view of the viewing arrangement, and Figure 3 shows
a stereogram of the stimulus.
There were three stimulus conditions: (1) stereo only,

(2) motion only, and (3) stereo and motion. In the motion-
only condition, the scene was viewed with the right eye
alone. Motion was produced by sinusoidally oscillating
the cylinder centrally around its major axis (Figure 2). The
amplitude of the oscillation was T35 deg and the cylinder
oscillated with a frequency of 1 Hz. The stereo and
motion stimuli always contained physically consistent
stereo and motion information. The initial direction of the
cylinder’s movement was determined randomly on each
trial. During piloting, we found that, despite there being
sufficient geometric information available in the motion-
only condition, some observers occasionally perceived a
depth reversal of the cylinder. This gave them an
ambiguous and somewhat nonrigid percept. In order to
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eliminate this possibility during the experiment, a gray
bar 10 cm in height and 3 cm in width was rendered
centrally at the screen distance to disambiguate the motion
(Figures 2 and 3).

When the cylinder oscillated, parts of its upper and lower
edges could pass “through” the bar (Figures 2 and 3). This
provided an occlusion cue that successfully disambiguated
the cylinder’s depth polarity for all observers. The bar had
a white fixation point approximately 3.3 mm in diameter
positioned centrally. The cylinder’s surface was otherwise
transparent; this meant that the observers could at all
times see the bar and fixation point, which were present
throughout the experiment. The background of the screen
during the experiment was black. Stimuli were presented
at 40, 60, 80, or 100 cm (which included the path between
the eye and mirrors). Given the fixed dimensions of the
cylinder, this meant that the visual angle subtended by the
stimuli varied naturally with distance. All stimuli were
rendered online in OpenGL using Matlab and the
Psychophysics toolbox extensions (Brainard, 1997;
Kleiner, Brainard, & Pelli, 2007). The room in which the
experiment was conducted was otherwise completely
dark.

Procedure

Observers completed an apparently circular cylinder
task (Johnston, 1991), in which they were asked to judge
whether the cylinder they were presented with was
squashed or stretched in depth extent relative to a
physically circular cylinder (Figure 2). Trials were
blocked by viewing distance (40, 60, 80, and 100 cm)
and the cue(s) defining the cylinder (motion, stereo, or
stereo and motion) and were completed in a randomized
order. Within a block of trials, the depth of the cylinder
was varied using the method of constant stimuli. There
were 9 depths and each was presented 30 times, in a
randomized order. The exact depths depended on the

Figure 3. Stereogram of the experimental stimuli. Left and middle images are for divergent fusion, and the middle and right images are for
cross-fusion. Note that the sizes of dots and luminance of aspects of the stimuli have been changed to make the images easier to free
fuse.

Figure 2. Diagrammatic side view of the experimental stimulus
(not to scale). Observers viewed a horizontally orientated
disparity-defined hemi-cylinder positioned at eye height, at a
distance D. Their task was to judge whether the cylinder was
circular, i.e., whether h = d. Throughout the experiment, a
vertically orientated gray bar with a central fixation point was
positioned at eye height, at the viewing distance D. In the motion
and stereo–motion conditions, the cylinder sinusoidally rotated
back and forth around its major axis, as indicated by the blue dot
and curved blue arrow in the diagram. The magnitude of
oscillation was T35 degrees. With no rotation applied, the upper
and lower edges of the cylinder abutted a vertical gray bar (as in
the diagram). When the cylinder rotated, its upper and lower
edges could pass “through” the gray bar, providing observers with
an occlusion cue that successfully disambiguated depth polarity
(see main text for more details). See also Figure 3, for a
stereogram of the experimental stimulus.
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person, the viewing distance, and the available cues and
were determined on the basis of pilot experiments. Prior to
the start of the experiment, observers were given a chance
to familiarize themselves with the stimuli and task.
On each trial, the cylinder was presented for 2 s, after

which it was extinguished, leaving only the gray bar and
fixation point. There was no time limit on observers
making a response; however, they typically responded in
around 1 s. The next trial in the block was presented
automatically after a 1 s interstimulus interval, which
started upon the observer making their response with a
keyboard button press. New dot coordinates for the
cylinder’s surface were generated on each trial.

Results

Cumulative Gaussian functions were fit to observers’
data using a bootstrapping technique (Wichmann & Hill,
2001a, 2001b); from this fitted function, we were able to
determine the point of subjective equality (PSE) and the
just noticeable difference (JND). The PSE is defined as the
50% point of the psychometric function and provides a
measure of the cylinder that would appear circular to the
observer, in units of depth-to-half-height ratio. A PSE of
one represents a circular cylinder, whereas a PSE greater
than one indicates that, to be perceived as circular,
cylinders needed to be stretched in depth extent. Con-
versely, a PSE less than one indicates that, to be perceived
as circular, cylinders needed to be squashed in depth
extent. The JND was defined as the standard deviation of
the cumulative Gaussian fitted to the observer’s data. This
is equivalent to the difference between the cylinder depth-
to-half-height ratios corresponding to the 50% and 84% of
the psychometric function. Figure 4 shows the PSEs and
Figure 5 shows the JNDs for each observer across our
range of viewing distances.
The PSE data show that for our observers a perceptually

circular cylinder, for both single-cue conditions, was
generally one that was squashed in depth extent. This
indicates that observers were overestimating the depth in
our displays. However, as can be seen, the PSEs and JNDs
for the single-cue data depended on both the viewing
distance and whether the cylinder was defined by motion
or stereo information. This variation in accuracy and
precision allowed us to test the weighted averaging model.
From the single-cue JNDs and PSEs, we predicted those
for the combined-cue condition using Equations 2 and 3.
Figure 6 shows the stereo–motion PSEs and those
predicted by the model. Similarly, Figure 7 shows the
stereo–motion JNDs and those predicted by the model. In
both plots, we show 95% confidence intervals around the
PSE and JND predictions. These were determined using
the bootstrapped 95% confidence limits around the PSEs
and JNDs of the single-cue conditions. For example, to

determine the confidence intervals around predicted
combined-cue PSEs, we used the weights determined by
the stereo and motion JNDs, as normal, but used the upper
or lower bounds of the bootstrapped 95% confidence
intervals around the stereo and motion PSEs, instead of
the PSEs themselves. This gave an upper or lower bound
on the predicted combined-cue PSE. Confidence intervals
around the predicted combined-cue JNDs were calculated
in a similar manner.
As can be seen, the weighted averaging model provides

a good fit to the combined-cue data for both the PSEs
(Figure 6) and JNDs (Figure 7). We fit a least squares
linear model to the predicted and observed PSEs, and
JNDs, for each observer to get an overall idea as to the fit
of the data to predictions of weighted averaging. The
mean R2 values for linear fits were 0.63 for the PSEs and
0.62 for the JNDs. Surprisingly, few cue combination
studies provide explicit statistically assessments of the fit
of the model, leaving the reader to judge this visually. One
such study that has is that of Burge et al. (2010). For the
combination of vision and haptic cues to slant, they found
an overall R2 value of 0.60 for both observed and
predicted JNDs and observed and predicted PSEs.
A number of assumptions are implicit in the analysis of

data from tasks where observers judge stimuli relative to
an internal standard, such as a circular cylinder (Johnston,
1991) or a 90-degree dihedral angle (Watt, Akeley, Ernst
et al., 2005). We assume that observers used the same
internal standard to judge object properties across all
conditions, such that over conditions observers did not
change their mind as to what constituted a circular
cylinder. We also assume that observers scaled the retinal
size of the object in the same way for both cues at a given
distance. If they did not do this, cylinders defined by
motion or stereo, presented at the same distance, would
look to be of different sizes. This might cause the single-
cue data to poorly predict the combined-cue data. Finally,
we assume that the functions relating perceived to
physical shape are linear across the range of ratios
covering the differences in perceived shape from the
individual cues.

Would it have been better to veto a cue?

The analysis of mean squared error presented in the
Introduction section allows us to gain an understanding of
whether combining stereo and motion cues using weighted
averaging resulted in more or less error than would have
occurred with vetoing one or other cue (Landy et al.,
1995). This is because mean squared error takes account
of both the constant and variable errors in the combined-
cue estimate. Figure 8 plots the mean squared error for the
single-cue and combined-cue conditions and that predicted
for the combined-cue condition given the PSE’s and JNDs
of the single-cue data. AlthoughMSE for the single-cue and
combined-cue conditions varies across observers, in many
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instances, there is a clear advantage, in terms of reduced
MSE, of combining cues rather than vetoing one or other
cue. The mean R2 value of a linear fit to the predicted and
observed combined-cue MSEs for each observer was 0.78,
which represents a good correspondence to that predicted.
Overall, the MSE data support the analysis presented in

the Introduction section. If the visual system were able to
calibrate cues so as to eliminate bias and maintain external
accuracy, combining cues so as to minimize variance
using weighted averaging would also minimize MSE.
However, when bias is present, this is not necessarily the
case (Figure 1). Observers exhibited clear perceptual bias
but combined cues so as to minimize the variance of the
combined-cue estimate. Despite this fact, there are clear
instances where the increase in bias observers accrued
from combining biased cues was more than compensated
for by a reduction in variance, leading to a lower overall
mean squared error. This suggests that weighted averaging

can be a robust strategy to adopt in the face of unknown
perceptual bias.

Deviations from weighted averaging

While the data are well fit by the weighted averaging
model, some deviations from the predictions are evident,
especially for observer OB3. This observer was able to
near veridically estimate shape when provided with stereo
and motion information, which deviates from the model’s
predictions. In contrast, this observer’s JNDs were well fit
by the model. There are a number of reasons why
deviations from weighted averaging might occur. The
first is in terms of unmodeled cues or the use of perceptual
priors. For reasons detailed in the Discussion section, we
feel that these cues are unlikely to have significantly
affected performance in our task. The second is the

Figure 4. Plots (a) through (e) show each observer’s stereo and motion PSEs across distance. Error bars show 95% confidence intervals
derived from the psychometric function fitting procedure. PSEs below one mean that to be perceived as circular, cylinders needed to be
squashed in depth relative to their height. PSEs greater than one mean that cylinders needed to be stretched in depth relative to their
height to be perceived as circular. These are consistent with an over- and underestimation of depth, respectively.
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possibility that, at least for some observers, promotion of
stereo and motion information might be possible
(Richards, 1985). If this is the case, these observers are
clearly in the minority (Tittle et al., 1995; Todd, 1998;
Todd & Norman, 2003; Todd et al., 1995). A more likely
explanation is simplifications and assumptions underlying
the weighted averaging model. We discuss these at greater
length below.

Discussion

Integrating biased sensory estimates

In the current paper, we provide evidence that, in
estimating three-dimensional shape, human observers
combine stereo and motion so as to minimize the variance
of the final combined-cue estimate (Ernst, 2006; Ernst &
Banks, 2002; Ernst & Bülthoff, 2004). In isolation, both

stereo and motion information typically result in biased
estimates of shape that depend on the distance at which
the object is viewed (Tittle et al., 1995; Todd et al., 1995).
This means that combining stereo and motion cues in
proportion to their reliability does not necessarily result in
a more accurate percept. The transfer functions that relate
sensory cues to properties of the world are likely to be
highly nonlinear (Hogervorst & Eagle, 1998; Scarfe &
Hibbard, 2004), so bias could be introduced into percep-
tual cues as a natural consequence of the way they are
sensed. This means that it is a nontrivial problem for the
visual system to know when a cue is biased.
Bias in perceptual estimates is not inevitable if

observers are able to calibrate their sensory data. How-
ever, the prevalence of perceptual bias in the estimation of
metric object properties, even with real-world stimuli
(Bradshaw et al., 2000; Cuijpers, Kappers, & Koenderink,
2000; Koenderink, van Doorn, Kappers, & Todd, 2002;
Koenderink, van Doorn, & Lappin, 2000; Wagner, 1985;
Watt, Akeley, Ernst et al., 2005), suggests that in many
circumstances calibration to maintain external accuracy

Figure 5. Plots (a) through (e) show each observer’s stereo and motion JNDs across distance. Error bars show 95% confidence intervals
derived from the psychometric function fitting procedure.
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has not been possible. To maintain accuracy with respect
to the world, the visual system needs to have information
regarding the accuracy of its cues. This information may
be unobtainable because the only way to judge accuracy is
by using the very cues that one might need to calibrate
(Ernst & Banks, 2002).
We derived equations for the level of mean squared

error in the combined-cue estimate that would result from
combining cues using weighted averaging, when in fact
one or more cues were biased. While minimizing MSE is
unlikely to be a viable strategy for the visual system,
given that the bias in individual cues is unknown, MSE
allows us to gain some understanding of when it would be
beneficial to combine biased cues rather than veto one
or the other (Landy et al., 1995). This is because it
incorporates the constant error as well as variable error in an
observer’s estimates (Berger, 1985). Across the range of
biases found in the present study, there were clear instances
where the mean squared error in the combined-cue estimate
was less than that of the individual cues. This suggests that

optimizing cue combination for variance might be a
reasonably robust strategy for the visual system to adopt.
This is not to say recalibration of perceptual attributes

in response to our actions in the world is not possible or
does not occur. The brain is clearly highly attuned to the
statistical structure of the environment. Evidence for this
comes from its ability to adaptively remap the relationship
between sensory information and properties of the world
(Adams et al., 2001) and to learn completely new sensory
mappings between arbitrary sensory inputs (Ernst, 2007).
However, cue calibration clearly fails to eliminate
perceptual bias under many circumstances (Todd &
Norman, 2003). Interestingly, evidence has shown that
when we make movements, the brain tends to adopt
control strategies that continuously sample relative infor-
mation over the course of a movement (Saunders & Knill,
2003, 2005). This removes the need to veridically estimate
metric properties of the world for adaptive and skillful
behavior (Smeets & Brenner, 2008). This is a stark
contrast to the assumption that, because behaviors are

Figure 6. Plots (a) through (e) show observers stereo–motion PSEs with 95% confidence intervals derived from the psychometric function
fitting procedure. The predictions from the MLE model are shown as the solid red line and 95% confidence intervals around these
predictions are shown as the red dashed lines.
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skilled and adept, they must be controlled by accurate
metric representations (Milner & Goodale, 1995, 2006).

The role of unmodeled cues and perceptual
priors

Computer-generated 3D stimuli typically contain
uncontrolled cues that conflict with the cues being
manipulated to render the stimuli (Akeley, Watt, Girshick,
& Banks, 2004; Hoffman, Girshick, Akeley, & Banks,
2008; Watt, Akeley, Ernst et al., 2005; Watt, Akeley,
Girshick, & Banks, 2005). One of the main reasons for
this is that the light rendering the scene emanates from a
single display surface (Watt, Akeley, Ernst et al., 2005).
This means that focus cues, such as accommodation and
blur, signal flatness rather than the intended 3D properties
of the scene. In a slant estimation task, Watt, Akeley,
Ernst et al. (2005) demonstrated the importance of such

cues by rotating their display surface so that focus cues
were either consistent or inconsistent with the amount of
slant specified by binocular and texture information.
While conflicting cues had no measurable effect on the
perceived slant of disparity-defined surfaces, the per-
ceived slant of texture-defined surfaces was significantly
reduced, consistent with cues to flatness.
They also measured the effect of conflicting cues on

disparity scaling by inducing greater cue conflict by
positioning the front-parallel screen at a distance different
from that used to render the stimuli. Under these
conditions, they found that conflicting cues reduced depth
constancy in stereo-defined objects, suggesting that focus
cues can affect disparity scaling by influencing the
distance used to scale image properties (Brenner & Landy,
1999; Brenner & van Damme, 1999). It is, therefore,
important to consider unmodeled cues such as these in the
current experiment, in particular whether they can account
for the pattern of biases that we observed.

Figure 7. Plots (a) through (e) show observers’ stereo–motion JNDs with 95% confidence intervals derived from the psychometric function
fitting procedure. The predictions from the MLE model are shown as the solid red line and 95% confidence intervals around these
predictions are shown as the red dashed lines.

Journal of Vision (2011) 11(7):12, 1–17 Scarfe & Hibbard 11



We matched the distance to our monitors to the
vergence specified distance of the stimuli so as to
minimize the effects of conflicting focus cues. However,
it remains possible that the absence of a gradient of
accommodative blur over the surface of our cylinders may
have been detectable. In addition, other cues could have
signaled stimulus flatness, specifically: (1) motion paral-
lax from residual head movements, (2) texture cues from
the pixel grid of the screen, and (3) the uniformly circular
dot size of the points defining the cylinder. We can,
therefore, make two predictions regarding these cues.
First, observers should underestimate depth in the 3D
scene because all uncontrolled cues signal stimulus flat-
ness (Watt, Akeley, Ernst et al., 2005). Second, this effect
should be most prominent in the single-cue conditions and
least prominent in the combined-cue condition. This is
because in the combined-cue condition observers have
two cues signaling the intended depth percept rather than
one.
As regards the first prediction, that depth should be

underestimated in our stimuli, Figure 4 shows that this

was clearly not the case. For both the stereo and motion
single-cue conditions, depth was near universally over-
estimated. This means that contrary to the predictions of
conflicting cues to flatness (Watt, Akeley, Girshick et al.,
2005), a perceptually circular cylinder for our observers
was one that was squashed in depth extent. Out of 40 data
points, the single point for which this does not hold is for
OB4 at the 100-cm viewing distance, with the stereo cue.
These results are consistent with previous studies that
have shown the depth of stereo-defined objects placed
below 80–100 cm to be overestimated with both simulated
and real-world objects (e.g., Johnston, 1991). We now
consider the second prediction, that the underestimation of
depth should be largest in our single-cue conditions.
Figures 4 and 5 show that this was also not the case.

Because the combined-cue PSEs were well fit by the
weighted averaging model, they typically fell between the
PSEs of the single-cue conditions. This means that with
both cues, the depth perceived was typically greater than
that in one of the single-cue conditions and less than that
in the other. The single observer who clearly deviated

Figure 8. Plots (a) to (e) show the mean squared error (MSE) of the stereo, motion, and combined-cue conditions for each observer. In
addition, we show the predicted MSE for the combined-cue condition. For more details, see the accompanying text.
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from the predictions of weighted averaging was OBS3.
However, this observer’s data are also inconsistent with
the predictions of cues to flatness, because with both cues
this observer, although perceiving shape near veridically,
perceived less depth than with each cue in isolation. We
can, therefore, be confident that cues to flatness (e.g.,
Watt, Akeley, Ernst et al., 2005) cannot explain the
pattern of results in our data. In fact, they predict the
opposite pattern of results to that which we find in nearly
all instances.
Another potential source of information that should be

considered is prior knowledge of the probable structure of
the environment. Within the Bayesian framework, this
knowledge is instantiated in the form of prior probability
distributions. Priors can have a significant effect on
perception. Specifically, as the variance of the sensory
data increases, priors are predicted to have a more
pronounced effect. This is a sensible strategy, as when
faced with poor information the system places more
weight on its past experience of the structure of the
environment. As with uncontrolled cues, many studies
have left priors unmodeled (Ernst & Banks, 2002;
Johnston et al., 1994) or assumed that they will have little
influence on the observed results, since the variance of the
prior might be expected to be large in comparison with
that of sensory cues (Hillis et al., 2004). These approaches
are clearly simplifications of a more complicated picture.
There are currently no direct measurements of the

statistical likelihood of different shapes in the environ-
ment, but we can make some inferences on the basis of
psychophysical studies. When interpreting an elliptical
projection at the retina, observers generally assume that
the object underlying the projection is circular. This
allows the observer to use the aspect ratio of the
projection to make an estimate of the 3D orientation of
the object (Knill, 2007; Muller, Brenner, & Smeets, 2009;
Seydell, Knill, & Trommershauser, 2010). We might
infer, therefore, that a prior for 3D shape in our cylinders
may bias observers to see our stimuli as circular. Like
focus cues, this prior should be most noticeable in the
single-cue conditions, as with both stereo and motion cues
the prior should receive less weight. It becomes immedi-
ately apparent, however, that a circularity prior cannot
provide an alternative account for our data. If we consider
the case where a cue provides a biased estimate of
cylinder shape, any action of a circularity prior can only
act to decrease, but not eliminate, the magnitude of this
bias. As such, a circularity prior fails to provide a valid
account of the bias that we observe (Figures 4 and 6).

Cue conflicts and perceptual unity

An important consideration for the visual system is
when it should combine sensory information provided by
different cues (Shams & Beierholm, 2010). In a cue
combination study, Gepshtein, Burge, Ernst, and Banks

(2005) varied the spatial proximity of visual and haptic
cues. Discrimination performance was consistent with statis-
tical optimality when the cues were spatially coincident, but
as the spatial conflict increased, precision decreased, such
that at the largest conflict it was consistent with that of
one cue alone. This pattern of results is sensible as cues
are more likely to arise from different objects as the
spatial separation between them increases (Ernst, 2006).
Similarly, instances of sensory bias and cue conflict are
interesting because they probe the circumstances under
which the visual system combines discrepant information,
presumably because it believes that even though the infor-
mation is inconsistent, it in fact arises from a single object.
The most extensively investigated consequence of large

cue conflicts is that of bistability (van Ee, van Dam, &
Erkelens, 2002). In this situation, perception can alternate
between that defined by each cue. During debriefing, none
of our observers ever reported bistability. To some extent,
this is to be expected, as in the combined-cue condition
the points viewed in stereo were carrying the motion
signal. A more likely consequence of cue conflict in our
study would have been for the combined-cue stimuli to
look nonrigid. This was also not reported by any of our
observers. If anything, the observers commented that the
combined-cue stimuli looked the most “real.” Our
observers, therefore, seem to have treated the cues as
belonging to the same object. As such, these results are
consistent with those of Girshick and Banks (2009), who
also observed perceptual unity with large cue-conflict
stimuli. Finally, it is interesting to note that under many
situations the visual system also seems quite unperturbed
by highly discrepant sensory inputs arising from the same
object (Smeets & Brenner, 2008).

Modifying models of cue combination

Minimizing variance is just one of a set of possible
strategies that the visual system might adopt when
combining sensory information (Clark & Yuille, 1990).
While the weighted averaging model predicted our data
well, the fit to this model was not perfect. This is the case
for the literature at large. The fit is generally good, but not
perfect. A number of other studies have shown that while
their data might show sensitivity to the variance of cues,
weighted averaging does not fit their data (Butler, Smith,
Campos, & Bulthoff, 2010; Rosas, Wagemans, Ernst, &
Wichmann, 2005). Deviations from predictions are clearly
important because they allow us to identify simplifications
and flaws in the models. One assumption addressed in the
current study is that individual cues provide unbiased
estimates of world properties. Other common assumptions
that we have also adopted are that the information pro-
vided by each cue is well modeled by a Gaussian distri-
bution (Hillis et al., 2002, 2004) and that information from
different cues is conditionally independent (Oruc et al.,
2003).
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The intrinsic constraint (IC) model of cue combination
was in part proposed to account for the large biases of
perceived shape exhibited by observers (Domini et al.,
2006; Tassinari & Domini, 2008). This is because when
individual cues are assumed to provide unbiased esti-
mates, the weighted averaging framework has problems
accounting for biases in the combined-cue percept without
evoking the role of conflicting information such cues to
flatness (Todd et al., 2010; Watt, Akeley, Ernst et al.,
2005). We have shown that under conditions where cues
to flatness predict the opposite pattern of bias to that
observed, the weighted averaging framework can account
for performance as long as one accepts that individual
cues can provide biased estimates of world properties,
such as three-dimensional shape. We used the weighted
averaging framework rather than the IC model for a
number of reasons.
The primary reason is that, within the distance range

that we used (distances up to 1 m), observers are readily
able to use vergence information to estimate distance and
scale retinal disparity (Brenner & Smeets, 2000; Brenner
& van Damme, 1998). With around 90% of the vergence
range being used up for distances below 1 m, it is in this
near distance range where stereo information should be of
maximum utility (Howard, 2002). The IC model currently
has no way to model the role of extraretinal cues such as
vergence or retinal cues such as vertical disparity, so in its
current form it cannot model performance where these
cues have a clear and demonstrable effect (Domini et al.,
2006). Second, it is not clear whether the IC model can be
readily generalized to model the full gamut of multimodal
cues available to the observer, which the Bayesian
weighted averaging framework has had considerable
success in doing (Ernst & Bülthoff, 2004). Interesting,
our data show that the weighted averaging framework can
easily model the effects of perceptual bias.
Some of the additional assumptions used in weighted

averaging are also starting to be tackled. Girshick and
Banks (2009) have modeled the combination of texture
and disparity cues to slant with “heavy-tailed” Gaussians
and proposed that combination with these distributions
could account for robust vetoing when cue conflicts are
large. Others have taken a more direct approach and
modeled the transfer function between world and cue, in
order to directly assess the shape of the likelihood
distribution and the bias that this might introduce into
the estimation process (Hogervorst & Eagle, 1998; Scarfe
& Hibbard, 2004). A further, but important, point to
consider is that estimation strategies may be highly cue
specific or specific to certain environmental circumstances
(Glennerster, Rogers, & Bradshaw, 1996; Scarfe &
Hibbard, 2006; Todd, 2004; Todd et al., 2010; Todd &
Norman, 2003). While this makes it difficult to derive
single unified rules for cue combination, and sensory
processing in general, it is exactly what might be expected
for an evolved system attuned to those aspects of its
environment that allow for adaptive behavioral control.
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